AI大模型应用开发之LangChain构建含Agen流程的RAG架构

AI大模型应用开发里用LangChain构建含Agen流程的RAG架构

随着大模型(LLM)的能力日益强大,检索增强生成(RAG)技术成了提升大模型知识准确性的关键办法。通过检索实时数据和外部文档,模型能够回答更多基于事实的问题,降低“幻觉”出现的概率。

而LangChain的LangGraph能把LLM、RAG、工具调用(Tools)整合到一个智能Agent流程图里,大大提升了问答系统的动态能力。本文通过一个完整实例,展现怎样用LangChain搭建一个“RAG + Agent”的问答系统,代码能直接复用,助力大家快速落地智能应用。

工程架构

llm_env.py          # 初始化LLM
rag_agent.py        # 结合RAG与Agent的主逻辑

初始化LLM

首先通过llm_env.py来初始化一个LLM模型对象,供整个流程使用:

from langchain.chat_models import init_chat_model

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

RAG + Agent系统搭建

导入依赖
import os
import sys
import time

sys.path.append(os.getcwd())

from llm_set import llm_env
from langchain.embeddings import OpenAIEmbeddings
from langchain_postgres import PGVector
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import MessagesState, StateGraph
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import END
from langgraph.checkpoint.postgres import PostgresSaver
初始化LLM与Embedding
llm = llm_env.llm

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
初始化向量数据库
vector_store = PGVector(
    embeddings=embeddings,
    collection_name="my_rag_agent_docs",
    connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
)
加载网页文档
url = "https://www.cnblogs.com/chenyishi/p/18926783"
loader = WebBaseLoader(
    web_paths=(url,),
)
docs = loader.load()
for doc in docs:
    doc.metadata["source"] = url
文本分割 & 入库
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
all_splits = text_splitter.split_documents(docs)

existing = vector_store.similarity_search(url, k=1, filter={"source": url})
if not existing:
    _ = vector_store.add_documents(documents=all_splits)
    print("文档向量化完成")

定义RAG检索工具

通过@tool装饰器,定义一个文档检索工具,供Agent动态调用:

@tool(response_format="content_and_artifact")
def retrieve(query: str) -> tuple[str, dict]:
    """从向量库中检索相关文档。"""
    retrieved_docs = vector_store.similarity_search(query, k=2)
    if not retrieved_docs:
        return "未找到相关文档。", {}
    return "\n\n".join(
        (f"来源: {doc.metadata}\n" f"内容: {doc.page_content}")
        for doc in retrieved_docs
    ), retrieved_docs

定义Agent Graph节点

LLM调用工具节点
def query_or_respond(state: MessagesState):
    llm_with_tools = llm.bind_tools([retrieve])
    response = llm_with_tools.invoke(state["messages"])
    return {"messages": [response]}
工具节点
tools = ToolNode([retrieve])
生成响应节点
def generate(state: MessagesState):
    recent_tool_messages = []
    for message in reversed(state["messages"]):
        if message.type == "tool":
            recent_tool_messages.append(message)
        else:
            break

    tool_messages = recent_tool_messages[::-1]

    system_message_content = "\n\n".join(doc.content for doc in tool_messages)

    conversation_messages = [
        message
        for message in state["messages"]
        if message.type in ("human", "system")
        or (message.type == "ai" and not message.tool_calls)
    ]
    prompt = [SystemMessage(system_message_content)] + conversation_messages

    response = llm.invoke(prompt)
    return {"messages": [response]}

组装Agent流程图

graph_builder = StateGraph(MessagesState)
graph_builder.add_node(query_or_respond)
graph_builder.add_node(tools)
graph_builder.add_node(generate)

graph_builder.set_entry_point("query_or_respond")
graph_builder.add_conditional_edges(
    "query_or_respond",
    tools_condition,
    path_map={END: END, "tools": "tools"},
)
graph_builder.add_edge("tools", "generate")
graph_builder.add_edge("generate", END)

启用Checkpoint & 运行流程

数据库存储器
DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"

with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    checkpointer.setup()

    graph = graph_builder.compile(checkpointer=checkpointer)
启动交互循环
input_thread_id = input("输入thread_id:")
time_str = time.strftime("%Y%m%d", time.localtime())
config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}

print("输入问题,输入exit退出。")
while True:
    query = input("你: ")
    if query.strip().lower() == "exit":
        break
    response = graph.invoke({"messages": [HumanMessage(content=query)]}, config=config)
    print(response)

总结

本文完整展示了如何运用LangChain + LangGraph,结合:

LLM(大模型)
Embedding检索(RAG)
Agent动态调用工具
流程图编排
Checkpoint存储

构建一个智能问答系统。通过把工具(RAG检索)和Agent机制相结合,能让LLM在需要的时候自主调用检索能力,有效增强对知识的引用能力,解决“幻觉”问题,具有很好的落地应用价值。

文章整理自互联网,只做测试使用。发布者:Lomu,转转请注明出处:https://www.it1024doc.com/12619.html

(0)
LomuLomu
上一篇 2025 年 6 月 23 日
下一篇 2025 年 6 月 24 日

相关推荐

  • PyCharm破解版是否能自动更新?附设置教程!

    重要提示:以下破解补丁、激活码均源自网络,仅供个人学习研究,禁止商业用途。若条件允许,请支持正版,前往 JetBrains 官方渠道购买授权。 PyCharm 是 JetBrains 推出的全功能 Python IDE,支持 Windows、macOS 与 Linux。本文将手把手演示如何借助破解补丁完成永久激活,解锁全部高级特性。 无论你使用哪个版本、哪种…

    PyCharm激活码 2025 年 9 月 12 日
    3300
  • DataGrip破解后JetBrains Toolbox还能用吗?

    申明:本教程 DataGrip破解补丁、激活码均收集于网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除。若条件允许,希望大家购买正版 ! DataGrip是 JetBrains 推出的开发编辑器,功能强大,适用于 Windows、Mac 和 Linux 系统。本文将详细介绍如何通过破解补丁实现永久激活,解锁所有高级功能。 如果觉得破解麻烦,可以购买…

    2天前
    1100
  • Java通过百度地图API获取定位-普通IP定位

    登录邮箱提醒功能实现:基于IP定位的实践指南 在本项目中,我们旨在通过用户的IP地址获取其地理位置信息,以便在登录邮箱时提供更精确的提醒。以下是实现该功能的详细步骤和代码示例。 百度地图开放平台 本文将详细介绍如何利用百度地图开放平台的API来实现IP定位功能。首先,访问百度地图开放平台官网了解更多信息。 开始前的准备工作 在开始之前,我们需要完成以下步骤:…

    未分类 2024 年 12 月 27 日
    45400
  • 促销系统:促销活动、优惠券、优惠规则概念模型设计

    大家好,我是汤师爷~ 概念模型设计是促销系统开发的关键环节,我们需要基于之前的功能分析,将复杂的促销业务拆解成清晰的领域概念,这些概念之间的关系界定和边界划分,将直接决定系统的可维护性和扩展性。 促销系统核心概念模型 通过对促销业务的分析,我们可以抽象出促销系统的关键概念模型。 1、促销活动模型 促销活动模型对活动的各个要素和规则进行抽象,包含活动名称、描述…

    2025 年 1 月 12 日
    36600
  • 【Java】异常处理见解,了解,进阶到熟练掌握

    各位读者,早安、午安、晚安! 如果您发现这篇文章对您有所启发,不妨点赞、评论、分享,您的支持是我不断进步的动力。也欢迎您将这篇文章推荐给更多人。 今天我们将深入探讨Java面向对象编程中的抽象类和接口,让我们一起来看看它们是如何协同工作的。 目录 1.(throws和throw)我们选择忽略这个异常,将其向外抛出 1.1:使用throws时的注意事项 1.2…

    2024 年 12 月 28 日
    31400

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信