开启AI大模型应用开发新篇:LangChain打造智能体基础

以LangChain与GPT - 4o - mini构建大模型智能体开发实战

在最近一段时间里,大模型所具备的能力一直在持续取得突破,这使得构建智能代理(Agent)系统成为了开发者们积极追逐的热点领域。

本文将会以LangChain框架作为核心,结合GPT - 4o - mini模型,通过接入工具以及运用消息修剪策略,来实现一个拥有记忆功能、能够调用搜索以及执行函数能力的智能体。

环境筹备与模型初始化

使用LangChain的时候,首先需要对语言模型进行初始化操作,这里所采用的是由OpenAI提供的GPT - 4o - mini模型。

# llm_env.py
from langchain.chat_models import init_chat_model

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

我们会把它封装在llm_env.py文件中,以便主程序进行导入。

主程序结构剖析

主逻辑文件是main_agent_trim.py,它具备以下功能:
- 工具的整合
- PostgreSQL持久化配置
- 消息修剪策略
- Agent交互循环

工具函数与搜索工具接入

我们首先定义了一个简单的数学函数add,同时接入了TavilySearchResults搜索工具,以此来增强智能体获取外部知识的能力。

def add(a: int, b: int) -> int:
    return a + b

search = TavilySearchResults(max_results=5)
tools = [add, search]

配置LangGraph持久化存储

我们运用PostgresSaver来记录agent的状态以及历史会话,从而支持多轮对话的记忆功能。

DB_URI = "postgresql://postgres:123456@localhost:5432/langchaindemo?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    checkpointer.setup()

用户输入thread_id时,我们会组合当天的日期来生成唯一的标识符,以确保每个会话线程都能够独立追溯。

消息修剪策略设计

为了把控模型输入token的上限,我们引入了trim_messages方法,在每一轮对话之前进行修剪操作:

def pre_model_hook(state):
    trimmer = trim_messages(
        max_tokens=65,
        strategy="last",
        token_counter=llm_env.llm,
        include_system=True,
        allow_partial=False,
        start_on="human",
    )
    trimmed_messages = trimmer.invoke(state["messages"])
    return {"llm_input_messages": trimmed_messages}

该策略仅仅保留最近的用户消息,避免长对话历史超出token限制,进而影响模型的响应。

构建智能体执行器

借助create_react_agent方法来创建智能体,传入模型、工具、hook以及checkpoint。

agent_excuter = create_react_agent(
    llm_env.llm,
    tools,
    pre_model_hook=pre_model_hook,
    checkpointer=checkpointer,
)

与智能体交互

程序进入循环模式,接收用户输入,执行智能体的推理过程,并输出响应内容以及工具调用情况。

while True:
    query = input("你: ")
    if query.strip().lower() == "exit":
        break
    input_messages = [HumanMessage(query)]
    response = agent_excuter.invoke({"messages": input_messages}, config=config)
    for message in response["messages"]:
        if hasattr(message, "content") and message.content:
            print(f"{message.type}:{message.content}")
        if hasattr(message, "tool_calls") and message.tool_calls:
            print(f"{message.type}:{message.tool_calls}")

示例

<p>开启AI大模型应用开发新篇:LangChain打造智能体基础</p>

总结

本文展示了如何基于LangChain框架构建一个集合了搜索、函数执行、消息修剪以及状态持久化为一体的智能体系统。通过合理设计hook以及工具链,我们能够持续拓展其功能范畴。

文章整理自互联网,只做测试使用。发布者:Lomu,转转请注明出处:https://www.it1024doc.com/12611.html

(0)
LomuLomu
上一篇 7小时前
下一篇 2025 年 6 月 15 日

相关推荐

  • 2024 GoLand最新激活码,GoLand永久免费激活码2025-02-05 更新

    GoLand 2024最新激活码 以下是最新的GoLand激活码,更新时间:2025-02-05 🔑 激活码使用说明 1️⃣ 复制下方激活码 2️⃣ 打开 GoLand 软件 3️⃣ 在菜单栏中选择 Help -> Register 4️⃣ 选择 Activation Code 5️⃣ 粘贴激活码,点击 Activate ⚠️ 必看!必看! 🔥 获取最新激活…

    2025 年 2 月 5 日
    51200
  • Python并行计算实战:多进程间数据共享的两种高效方案

    Python并行计算实战:多进程间数据共享的两种高效方案 核心要点 在Python多进程编程中,实现进程间数据共享主要有两种方式:共享内存机制和服务进程管理。前者通过Value和Array直接操作物理内存,具有高性能优势但需要同步锁保障安全,支持数值、数组及自定义结构体(需借助ctypes模块)。后者通过Manager服务进程管理共享对象,支持更丰富的数据类…

    未分类 2025 年 5 月 19 日
    15700
  • MySQL 安装部署

    概述 本文主要介绍如何在 Linux 中以 RPM 包的方式安装 MySQL 并进行相关的初始化配置,文中方案均已实践验证。 操作系统 CentOS 7.6 数据库版本 MySQL 8.4.3 LTS [!NOTE] 说明 本文主要介绍 RPM 包的安装方式,其他安装方法可查阅官网:MySQL :: MySQL 8.4 Reference Manual ::…

    未分类 2025 年 1 月 13 日
    24500
  • FreeSwitch与Java通信ESL

    Java ESL 是一个用于与 FreeSWITCH 进行交互的 Java 开发库,它基于 ESL(Event Socket Library)协议,通过与 FreeSWITCH 的 ESL 服务器建立连接,实现了底层的事件通知和控制。 本文将介绍如何使用 官方提供的Java ESL库实现与FreeSwitch的沟通。 第一:准备工作 在开始使用 Java E…

    未分类 2025 年 1 月 17 日
    28400
  • 2025年最新DataGrip永久破解教程(附激活码/注册码)🔥

    适用于JetBrains全家桶(IDEA、PyCharm、DataGrip、GoLand等)的终极破解方案✨ 先给大家看看破解成功的效果图,有效期直接拉到2099年,简直不要太爽!🎉 下面就用最详细的图文教程,手把手教你如何永久激活DataGrip。这个方法同样适用于旧版本哦~💡 无论你用的是Windows、Mac还是Linux系统,都能完美破解! 第一步:…

    2025 年 6 月 2 日
    14600

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信