文章标题:飞算JavaAI在智慧城市构建中的全方位技术革新:从交通协同到应急响应的实践探究
文章内容:免责声明:本篇文章所有内容皆为笔者自身实验所得,并非用于广告推广,也不存在抄袭行为,若有侵权,请及时与我取得联系。
目录
一、智慧城市核心场景的技术突破
1.1 交通信号智能优化系统的实时决策
1.1.1 实时车流数据的处理与剖析
@Service
@Slf4j
public class TrafficFlowService {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private TrafficFlowMapper flowMapper;
@Autowired
private TrafficPredictor predictor;
private static final String TRAFFIC_FLOW_TOPIC = "traffic:flow:realtime";
private static final String INTERSECTION_FLOW_KEY = "traffic:intersection:flow:";
private static final int CONGESTION_THRESHOLD = 800; // 单位:辆/小时
/**
* 接收并处理实时车流数据
*/
@KafkaListener(topics = TRAFFIC_FLOW_TOPIC, groupId = "traffic-flow-processor")
public void processRealTimeFlow(ConsumerRecord<String, String> record) {
try {
TrafficFlowData data = JSON.parseObject(record.value(), TrafficFlowData.class);
Long intersectionId = data.getIntersectionId();
LocalDateTime collectTime = data.getCollectTime();
TrafficFlowData cleanedData = preprocessData(data);
if (cleanedData == null) {
return;
}
String cacheKey = INTERSECTION_FLOW_KEY + intersectionId;
redisTemplate.opsForList().leftPush(cacheKey, cleanedData);
redisTemplate.opsForList().trim(cacheKey, 0, 59); // 保留60条(5分钟*12条/分钟)
List<Object> recentData = redisTemplate.opsForList().range(cacheKey, 0, -1);
double avgFlow = calculateAverageFlow(recentData);
redisTemplate.opsForValue().set(cacheKey + ":avg", avgFlow, 1, TimeUnit.HOURS);
if (avgFlow > CONGESTION_THRESHOLD) {
sendCongestionWarning(intersectionId, avgFlow, collectTime);
kafkaTemplate.send("traffic:signal:optimize",
intersectionId.toString(), JSON.toJSONString(cleanedData));
}
asyncService.saveTrafficFlowHistory(cleanedData);
} catch (Exception e) {
log.error("处理实时车流数据失败", e);
}
}
public TrafficPredictionResult predictShortTermFlow(Long intersectionId, int minutes) {
List<TrafficFlowHistory> historyData = flowMapper.selectHistoryByTime(
intersectionId, LocalDate.now(), getTimeRange(minutes));
String cacheKey = INTERSECTION_FLOW_KEY + intersectionId;
List<Object> recentData = redisTemplate.opsForList().range(cacheKey, 0, 29); // 最近30条
TrafficPredictionParam param = new TrafficPredictionParam();
param.setIntersectionId(intersectionId);
param.setHistoryData(historyData);
param.setRecentData(recentData);
param.setPredictMinutes(minutes);
return predictor.predict(param);
}
private TrafficFlowData preprocessData(TrafficFlowData data) {
if (data.getVehicleCount() < 0 || data.getVehicleCount() > 2000) {
log.warn("异常车流数据: {}", data);
return null;
}
if (data.getDeviceId() == null) {
data.setDeviceId(getDeviceIdByLocation(data.getLat(), data.getLng()));
}
if (data.getCollectTime() == null) {
data.setCollectTime(LocalDateTime.now());
}
return data;
}
}
1.1.2 动态信号配时的优化算法
@Service
public class TrafficSignalOptimizationService {
@Autowired
private TrafficFlowService flowService;
@Autowired
private SignalControlClient signalClient;
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private Scheduler scheduler;
private static final String SIGNAL_TIMING_KEY = "traffic:signal:timing:";
private static final int OPTIMIZE_INTERVAL_SECONDS = 60;
@KafkaListener(topics = "traffic:signal:optimize", groupId = "signal-optimizer")
public void optimizeSignalTiming(ConsumerRecord<String, String> record) {
try {
Long intersectionId = Long.parseLong(record.key());
TrafficFlowData flowData = JSON.parseObject(record.value(), TrafficFlowData.class);
String lastOptimizeKey = SIGNAL_TIMING_KEY + intersectionId + ":lastOptimize";
Object lastTimeObj = redisTemplate.opsForValue().get(lastOptimizeKey);
if (lastTimeObj != null) {
LocalDateTime lastTime = (LocalDateTime) lastTimeObj;
if (ChronoUnit.SECONDS.between(lastTime, LocalDateTime.now()) < OPTIMIZE_INTERVAL_SECONDS) {
log.info("路口{}处于优化冷却期,跳过本次优化", intersectionId);
return;
}
}
SignalTiming currentTiming = signalClient.getCurrentTiming(intersectionId);
if (currentTiming == null) {
currentTiming = getDefaultTiming(intersectionId);
}
Map<Integer, Integer> directionFlow = getDirectionFlow(intersectionId);
SignalTiming optimizedTiming = calculateOptimalTiming(
currentTiming, directionFlow, flowData.getCollectTime());
Result<Boolean> applyResult = signalClient.applyTiming(intersectionId, optimizedTiming);
if (applyResult.isSuccess() && applyResult.getData()) {
redisTemplate.opsForValue().set(lastOptimizeKey, LocalDateTime.now(), 1, TimeUnit.HOURS);
redisTemplate.opsForValue().set(
SIGNAL_TIMING_KEY + intersectionId, optimizedTiming, 24, TimeUnit.HOURS);
log.info("路口{}信号配时优化成功: {}", intersectionId, optimizedTiming);
} else {
log.error("路口{}信号配时应用失败", intersectionId);
}
} catch (Exception e) {
log.error("优化信号配时失败", e);
}
}
private SignalTiming calculateOptimalTiming(
SignalTiming currentTiming, Map<Integer, Integer> directionFlow, LocalDateTime time) {
int totalFlow = directionFlow.values().stream().mapToInt(Integer::intValue).sum();
Map<Integer, Double> flowWeight = directionFlow.entrySet().stream()
.collect(Collectors.toMap(
Map.Entry::getKey,
entry -> totalFlow == 0 ? 0 : (double) entry.getValue() / totalFlow
));
int baseCycle = calculateBaseCycle(totalFlow);
Map<Integer, Integer> greenTimeMap = new HashMap<>();
directionFlow.forEach((direction, flow) -> {
double weight = flowWeight.getOrDefault(direction, 0.0);
int greenTime = (int) Math.round(weight * baseCycle);
greenTime = Math.max(greenTime, 15);
greenTimeMap.put(direction, greenTime);
});
int offset = calculateOffset(currentTiming.getIntersectionId(), time);
SignalTiming optimized = new SignalTiming();
optimized.setIntersectionId(currentTiming.getIntersectionId());
optimized.setCycle(baseCycle);
optimized.setGreenTimes(greenTimeMap);
optimized.setYellowTime(3);
optimized.setAllRedTime(2);
optimized.setOffset(offset);
optimized.setEffectiveTime(LocalDateTime.now());
optimized.setOptimizationReason("实时车流触发:总流量" + totalFlow);
return optimized;
}
private int calculateBaseCycle(int totalFlow) {
if (totalFlow < 300) {
return 60;
} else if (totalFlow < 600) {
return 90;
} else if (totalFlow < 1000) {
return 120;
} else {
return 150;
}
}
}
1.2 城市应急指挥调度系统的协同响应
1.2.1 应急事件状态机与流程引擎
@Service
public class EmergencyCommandService {
@Autowired
private EmergencyEventMapper eventMapper;
@Autowired
private ResourceManager resourceManager;
@Autowired
private DepartmentClient departmentClient;
@Autowired
private StateMachineFactory<EmergencyState, EmergencyEvent> stateMachineFactory;
public Result<EmergencyEventVO> reportEvent(EmergencyReportDTO dto) {
EmergencyEvent event = new EmergencyEvent();
event.setEventNo(generateEventNo());
event.setTitle(dto.getTitle());
event.setEventType(dto.getEventType());
event.setLevel(evaluateEventLevel(dto));
event.setLocation(dto.getLocation());
event.setLat(dto.getLat());
event.setLng(dto.getLng());
event.setDescription(dto.getDescription());
event.setReporterId(dto.getReporterId());
event.setReporterName(dto.getReporterName());
event.setStatus(EmergencyState.REPORTED);
event.setReportTime(LocalDateTime.now());
eventMapper.insert(event);
StateMachine<EmergencyState, EmergencyEvent> stateMachine =
stateMachineFactory.getStateMachine("emergency_" + event.getEventNo());
stateMachine.getExtendedState().put("eventId", event.getId());
stateMachine.getExtendedState().put("eventNo", event.getEventNo());
stateMachine.start();
boolean transitioned = stateMachine.sendEvent(EmergencyEvent.ACCEPT);
if (!transitioned) {
log.error("事件状态转换失败,eventNo:{}", event.getEventNo());
return Result.fail("事件受理失败");
}
EmergencyEventVO vo = convertToVO(event);
return Result.success(vo);
}
public Result<ResourceDispatchVO> dispatchResources(Long eventId, List<ResourceDispatchDTO> resources) {
EmergencyEvent event = eventMapper.selectById(eventId);
if (event == null) {
return Result.fail("事件不存在");
}
if (event.getStatus() != EmergencyState.ACCEPTED &&
event.getStatus() != EmergencyState.DISPATCHING) {
return Result.fail("当前事件状态不允许调度资源");
}
StateMachine<EmergencyState, EmergencyEvent> stateMachine =
stateMachineFactory.getStateMachine("emergency_" + event.getEventNo());
stateMachine.getExtendedState().put("eventId", eventId);
stateMachine.getExtendedState().put("eventNo", event.getEventNo());
stateMachine.start();
stateMachine.getExtendedState().put("resources", resources);
boolean transitioned = stateMachine.sendEvent(EmergencyEvent.DISPATCH);
if (!transitioned) {
return Result.fail("资源调度命令发送失败");
}
ResourceDispatchVO result = new ResourceDispatchVO();
result.setEventId(eventId);
result.setEventNo(event.getEventNo());
result.setDispatchTime(LocalDateTime.now());
result.setResourceCount(resources.size());
result.setStatus("调度命令已发出");
return Result.success(result);
}
@Configuration
@EnableStateMachineFactory
public static class EmergencyStateMachineConfig
extends StateMachineConfigurerAdapter<EmergencyState, EmergencyEvent> {
@Autowired
private EmergencyAcceptedAction acceptedAction;
@Autowired
private EmergencyDispatchedAction dispatchedAction;
@Autowired
private EmergencyProcessedAction processedAction;
@Autowired
private EmergencyCompletedAction completedAction;
@Autowired
private EmergencyCancelledAction cancelledAction;
@Override
public void configure(StateMachineStateConfigurer<EmergencyState, EmergencyEvent> states) throws Exception {
states
.withStates()
.initial(EmergencyState.REPORTED)
.state(EmergencyState.ACCEPTED)
.state(EmergencyState.DISPATCHING)
.state(EmergencyState.PROCESSING)
.state(EmergencyState.COMPLETED)
.state(EmergencyState.CANCELLED)
.end(EmergencyState.COMPLETED)
.end(EmergencyState.CANCELLED);
}
@Override
public void configure(StateMachineTransitionConfigurer<EmergencyState, EmergencyEvent> transitions) throws Exception {
transitions.withExternal()
.source(EmergencyState.REPORTED).target(EmergencyState.ACCEPTED)
.event(EmergencyEvent.ACCEPT)
.action(acceptedAction);
transitions.withExternal()
.source(EmergencyState.ACCEPTED).target(EmergencyState.DISPATCHING)
.event(EmergencyEvent.DISPATCH)
.action(dispatchedAction);
transitions.withExternal()
.source(EmergencyState.DISPATCHING).target(EmergencyState.PROCESSING)
.event(EmergencyEvent.PROCESS)
.action(processedAction);
transitions.withExternal()
.source(EmergencyState.PROCESSING).target(EmergencyState.COMPLETED)
.event(EmergencyEvent.COMPLETE)
.action(completedAction);
transitions.withExternal()
.source(EmergencyState.REPORTED).target(EmergencyState.CANCELLED)
.event(EmergencyEvent.CANCEL)
.action(cancelledAction);
transitions.withExternal()
.source(EmergencyState.ACCEPTED).target(EmergencyState.CANCELLED)
.event(EmergencyEvent.CANCEL)
.action(cancelledAction);
}
}
}
1.2.2 应急资源智能调度算法
@Service
public class EmergencyResourceService {
@Autowired
private ResourceMapper resourceMapper;
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private DistanceCalculator distanceCalculator;
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
private static final String RESOURCE_CACHE_KEY = "emergency:resource:";
private static final String RESOURCE_TYPE_KEY = "emergency:resource:type:";
public List<ResourceVO> queryAvailableResources(ResourceQueryDTO query) {
String cacheKey = RESOURCE_TYPE_KEY + query.getResourceType();
Set<Object> resourceIds = redisTemplate.opsForSet().members(cacheKey);
if (resourceIds == null || resourceIds.isEmpty()) {
List<Resource> dbResources = resourceMapper.selectAvailableByType(
query.getResourceType(), query.getLocation());
if (dbResources.isEmpty()) {
return Collections.emptyList();
}
dbResources.forEach(res ->
redisTemplate.opsForSet().add(cacheKey, res.getId()));
redisTemplate.expire(cacheKey, 30, TimeUnit.MINUTES);
return dbResources.stream().map(this::convertToVO).collect(Collectors.toList());
}
List<Long> ids = resourceIds.stream()
.map(id -> Long.parseLong(id.toString()))
.collect(Collectors.toList());
List<Resource> resources = resourceMapper.selectBatchIds(ids);
double maxDistance = query.getMaxDistance() != null ? query.getMaxDistance() : 5.0;
List<Resource> filtered = resources.stream()
.filter(res -> {
double distance = distanceCalculator.calculate(
query.getLat(), query.getLng(), res.getLat(), res.getLng());
return distance <= maxDistance;
})
.collect(Collectors.toList());
filtered.sort((r1, r2) -> {
double d1 = distanceCalculator.calculate(
query.getLat(), query.getLng(), r1.getLat(), r1.getLng());
double d2 = distanceCalculator.calculate(
query.getLat(), query.getLng(), r2.getLat(), r2.getLng());
int distanceCompare = Double.compare(d1, d2);
if (distanceCompare != 0) {
return distanceCompare;
}
int statusCompare = Integer.compare(r2.getStatus(), r1.getStatus());
if (statusCompare != 0) {
return statusCompare;
}
return Integer.compare(r2.getLevel(), r1.getLevel());
});
return filtered.stream().map(this::convertToVO).collect(Collectors.toList());
}
public ResourceDispatchResult dispatchOptimalResources(EmergencyEvent event, List<ResourceTypeDTO> requiredTypes) {
ResourceDispatchResult result = new ResourceDispatchResult();
result.setEventId(event.getId());
result.setEventNo(event.getEventNo());
result.setDispatchTime(LocalDateTime.now());
result.setResources(new ArrayList<>());
for (ResourceTypeDTO type : requiredTypes) {
ResourceQueryDTO query = new ResourceQueryDTO();
query.setResourceType(type.getType());
query.setQuantity(type.getQuantity());
query.setLocation(event.getLocation());
query.setLat(event.getLat());
query.setLng(event.getLng());
query.setMaxDistance(calculateMaxDistanceByLevel(event.getLevel()));
List<ResourceVO> candidates = queryAvailable
文章整理自互联网,只做测试使用。发布者:Lomu,转转请注明出处:https://www.it1024doc.com/13576.html